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ABSTRACT

Contributions to the theory of delta wings by three
papers published by the O. N. E. R. A. are discussed. These
papers are concerned with (1) the shape of the vortex sheets
shed by the sharp leading-edges of thin delta wings, (2)
the "bursting" of the vortices, i.e., the flaring of the
vortex cores, and (3) the effect of these phenomena on
the lift of delta wings.

Complete translations of two of the papers are presented:
M. Roy: "On the Theory of the Delta Wing—Apex-Vortices and

Sheets en Cornet.”

H. Werle: "On the Bursting of the Apex-Vortices of a Delta

Wing at Low Speeds."
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treated by Poisson-Quinton and Erlich in "Hyper-
sustentation et equilibrage des ailes élancees" --
presented at an O. N. E. R. A. Colloguium in
November, 1964.

The paper by Poisson-Quinton has been translated as
NASA TT F-9523 (reference 4). The papers by Roy and Werle
are presented in translation in this report.

Maurice Roy is the Director-General of the O. N. E. R.
A. His paper, "On the theory of the delta wing -- Apex-
vortices and sheets en cornet", describes, in detail, the
vortex sheets which separate ffom the sharp leading-edge
of a thin delta wing. These vortex sheets roll-up into
a helical - or cone-shaped vortex that is cornucopia-
shaped and which apparently originates at the apex of the
delta wing. These vortices, Mr. Roy terms "cornets" (after
the French pastry cornets which are small funnel-shaped |
pastries, often filled with whipped cream). This term is so
descriptive, that in the translation, included in this
report, it is preserved and reference is méde to vortex
sheets en cornet.

He goes to considerable length in describing the flow
£icld ‘
edges operating at a positive angle of attack. The analysis
can be summarized as follows: There is produced, on both

the upper and lower surfaces, a transverse flow. The pressure



INTRODUCTION

During the past two years, studies of delta wings

~have been carried on at Wichita State University under

NASA grants. These studies included extensive experimental
studies of the flow fields about delta and double-delta wings
conducted at low speed and reported by Wentz in references

1l and 2. Also a review of the literature was made by Razak
and Snyder (reference 3).

In the course of this work, it became evident that
three important concepts in this field had been treated in
papers published by L'OFFICE NATIONAL D'ETUDES ET DE RECHERCHES
AERONAUTIQUES (O. N. E. R. A.) of France. These concepts are:

(1) The geometry of the vortex sheet which separates
from the sharp leading-edge of a thin delta wing =—
treated by Maurice Roy in "Sur la theorie de 1l'aile
in delta", published by 0. N. E. R. A. in February,
1957.

(2) The "bursting" of the vortices above delta wings —
treated by H. Werle in "Sur l'eclatement des
tourbillons d'apex d'une aile delta aux faibles
vitesses," published by the O. N. E. R. A. in
1960.

(3) Limitation to the value of lift-curve slope due to

vortex bursting and a method for predicting lift —




field causes the fluid to flow around the sharp leading-edge
from the lower surface. This sharp leading-edge constitutes

a singular point in the transverse plane — a point which cannot
"exist in a real fluid flow field. The surface fluid (parietal
fluid) separates from the surface at or near the leading-edge
forming vortex filaments which constjitute a vortex sheet.

This vortex sheet wraps-up en cornet, providing an extension

of the thin wing and terminating in a bourrelet tourbillon-

naire marginal de la nappe — a vortex pad (or bubble) edge of

the sheet. This phenomenon, which is also described as
"the padded marginal edge of the sheet," is really a rotational
core of the wrapped-up vortex sheet.
In the paper, Roy attempts to mathematically describe
this actual flow field (figure I-a) with results that are
not, at present, useful. 1In contrast, Brown and Michaels
approximated it with a simplified pattern (figure I-b) before
describing the field mathematically with quite useful results.
Although Roy refers to "...particular phenomena which
appear near the tips... of these wings as well as in certain
regions of their trailing-edge,...", he then ignores these
phenomena and concerns himself only with the "... two symmetric
vortices coming especially from the apex and forming, above
the upper surface, a vee...". 1In so doing, Roy has ignored
the secondary vortices. Figures II and III, taken from

reference 3, show schematic representations of the secondary

vortex.



Wentz measured the effect of the secondary vortex by
integrating the circulation about paths which included and
excluded this vortex. He reported, in reference 2, that
the value of circulation determined by performing an integra-
tion along a closed path which excluded the secondary "reversed"
vortex was larger than that obtained by choosing a path of
integration which included the secondary vortex. The latter
value is that corresponding to measured lift of the wing.

"Flow field measurements generally confirm the
patterns assumed in theoretical models except for the presence
of a secondary, reversed vortex. Vortex strength values
and vortex spans are considerably less than those predicted
by mathematical models. The reversed vortex does not
appear to be of sufficient magnitude to account for the
discrepancy between theory and experiment. The onset of
vortex core breakdown and attendant reduced circulation
seem to be responsible for the greatest discrepancy between
experiment and theory." -(2)

H. Werle, in "On the bursting of the apex-vortices of
a delta wing at low speeds", presents an excellent study of
the "bursting” or "explosion” of the vortex sheet en cornet
above the wing surface. This phenomenon is called "vortex
breakdown" by many authors. The terms "bursting" and vortex
"breakdown" are misleading in that they imply a more or less

complete disorganization of the flow with immediate disappear-




ance of circulation. This disintegration is not what occurs.

Wentz has suggested that vortex-core flaring is a more accurate

term to describe this phenomenon. The rotational core of the -
. vortex increases in diameter; the circulation does not immed-
iately dissappear, although the rate of viscous dissipation
increases.

In "Hyperlift and Balancing of Slender Wings", Phillipe
Poisson-Quinton and E. Erlich show the effect of the flaring
of the vortex core on the wing lift. Reference 2 states:

"Results indicate that vortex core breakdown is the
source of the principél discrepancy between measured and
theoretical 1lift. The lift prediction method of Poisson-
Quinton accounts for the breakdown and seems to be the
most satisfactory method éf lift prediction available
presently. Better définition of vortex core breakdown
boundaries for non-delta slender wings and the effects of
breakdown on lift will be required before lifting prediction
for slender sharp-edged wings is entirely satisfactory."

The translation of Roy's paper was by Professor-
Emeritus Jacquetta Downing, and of the Werle paper by Miss

Nancy Razak.
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SCHEMATIC DRAWINGS OF SEPARATED FLOW OVER
SLENDER DELTA WINGS

(b) APPROXIMATED FLOW FIELD

Figure I



O @4nb614

Y

X3LHOA AHVANOD3S
Q3d4013A30 ATINd

X31HOA TWViIldS
d3d013A3a A11Nnd

X3LHOA AYVANOD3IS
3O NOILVYWYHOJ4 TVILLINI

3903 ONIQV31 WOY4
d3HS 133HS X31HOA TVHIdS







N67-16169

Translation of: SUR LA THEORIE DE'LAILE EN DELTA--TOURBILLONS

D'APEX ET NAPPES EN CORNET

From: La Recherche Aeronautique, No. 56

Fevrier, 1957

ON THE THEORY OF THE DELTA WING

VORTICES FROM THE APEX AND SHEETS IN CORNET

by
Maurice Roy

Member of the (French) Academy of Sciences

Director-General of the O.N.E.R.A.

1. INTRODUCTION

For some time numerous works have been published in
order to establish, for delta and other wings with extreme
sweep-back, a simplified theory which may be in harmony
with the peculiarities, more and more widely known, of the
_flow of air around wings of this sort.

It is essentially of the scheme of this flow that I
shall treat here with a view of utilizing it as a basis of

theory.
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The observation of the phenomena must necessarily pre-
cede the elaboration of their theory. For at least six
years I have given, through the O.N.E.R.A., much emphasis on
research on the visualization of these flows. 1In this
manner (and thanks notably to the efforts and to the clever-
ness of Mr. Werle who has emphasized, among others, the
technique of opaque filaments or streaks, white or colored),
the hydrodynamic tunnel at Chatillon, following my concep-
tion, was used intensely and resulted in the valuable cross-
checking of other attempts. These other efforts were expended
in wind tunnels and were accompanied by visualization through
the use of smoke, volatile liquids and wool tufts.

In the hydrodynamic tunnel, especially, it was pos-
sible to examine thoroughly some details which otherwise
escape observation. Mr. Werle has already presented in

Recherche Aeronautique, at two different times, some results

of various studies of this kind.

In passing, I emphasize that in this research there
has been no ignoring of the considerable difference between
the Reynolds' Numbers realized in these studies in the
hydrodynamic tunnel and those relative to a real plane wing,
even if the latter flies only at speeds at which the com-
pressibility of the air is legitimately negligible.

But with the necessary changes, these experiments
furnish on the development of some phenomena, qualitative

information that one might qualify (with some humor) by




saying that the colored streaks, are, in the experiments in

question, intensely enlightened.

2. THE SCHEME OF THE POTENTIAL FLOW FIELD

The delta wing considered here is constituted by an
angular sector of an infinite plane with the angle at the
top being m - 2 ® , @ being the angle of sweepback.

The relationship of the xyz axes to the wing are
shown in Figure 1l; the axis, x, is the longitudinal axis
of the wing, positive in the dbwnétream direction. The flow
is assumed steady and the speed at infinity, VO at the
angle of incidence and with no drag. The fluid is assumed

incompressible and perfect.

z g

Figure 1

The components u, v, w, of the relative velocity of
motion, in a non-dimensional form, are:
(u/v,) cos a =1 + w; (v/V_) cos a = x;

(w/VO) cos o = T (1)

13
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Let us presume that the flow is conic with regard to
the apex(w,x, and t are functions only of y/x and z/x) and

that, in the transversal plane, in which the complex variables

Y _ z
x cotg '/ =3 cote '’

E=n+1ig; n=
the flow is solenoid; hypotheses which are not strictly
compatible, as will be stated later. Then, the normalized
speed (1 + w, x, 1) can be defined from a complex potential
f (¢) such as:

x - it = df/d €; @ = cot?-R(f—%)

The scheme of the potential continuum carries along in
the transversal plane, a plane with turning at the boundaries,
n =+ 1, of the rectilinear section (-1, +1) of the axis
n which represents the transverse section of the wing, of
which the wing span, at the side x is 2b = 2x cot @ .

In the half-plane section, n = o, where ¢ = reie, 8

varies from - 7/2 to + n/2, the potential in question, f(§)

and the reduced speed maybe expressed:

Ff(&) = - i ¢£2 - 1 tan o

£

£2 -1
) tan o cot¢@

y — im = =1 ( ) tan o

The bottom and top surfaces of the wing, indicated by

the indices e and r, are respectively defined by o < Ney < 1,

bei T Oy

and the normalized speeds take the values:




el
]
o

. ) . T . = 03
ei ei fff??ﬁr " oel i

Xei = 7 Jei fT‘:“;}' with 3o, =+ 1
y
Intrados
(a>0)(L9wer surface)

Extrados

(o> 0) (Upper surface)

B Figure 2
One deduces that the tangent to the parietal streamlines

{streamlines of the flow along or attached to the surface - ed.)

has an inclination, to the axis X, of an angle B (see figure 2),

such that:

tan B_. = el = = m_—

_: T L 5 . cord + 3 . (1 - n® cot a
oL L ei -1 -el( n )

On the upper surface, the parietal streamlines or boundary-

streamlines leave (i.e., begin -ed.) orthogonally from the

leading-edge and run downstream toward infinity becoming

15



asymptotically parallel to the X - axis.

On the lower surface, on the other hand, all of the

surface streamlines begin at the apex, 0. Some of these end
orthogonally at the leading=-edge. The others run downstream
toward infinity becoming asymptotically parallel to the X - axis.
These two catagories (of flow -ed.) separate along a recti-

linear boundary inclined to the x - axis at an angle, Bz,such

that

tan B = cot @ \// ilf:;;

This line of division of parietal flow on the lower
surface exists then (tan 82 > 0) only if o is small enough
so that tan o remains smaller than 1/2(sin 2¥). This limit
attains its maximum for the P = 45° case-- intermediate
between large sweepback (@ > 45°) and small sweep (P < 45°).
It is understood that large angles of attack should not
be considered because the theories of 1lift and of pressure
distribution on the wings are only for rather small angles
of attack.

In any case, the parietal streamlines of the lower
surface at the leading-edge correspond to a turning of

the adjacent fluid around the leading-edge, at right-angle

to the leading-edge, and with infinite speed and therefore,

with a negative infinite pressure.

In this scheme, a potential flow field in which there




is a continuous flow around the leading-edge, and which,

in the local plane, is perpendicular to this irrotational
flow of a perfect incompressible fluid, is analagous to the
‘present plane leaving the contour of the edge of a slender
plane at an angle of attack which is not zero. Consequently,
one finds again the singularities, or "physical abberations",
of the rectilinear profile theory as well as the necessity

of a theoretical effect of suction on the leading-edge, while,

" will arise

in reality, a simple detachment, or "separation,
along the length of the leading-edge.

Then, on the upper surface, the flow which is pouring
out from the lower surface, at right angle to the leading-
' edge would unite in a zone of reverse motion remaining
practically stationary along the length of this leading-edge.
This zone would thus constitute a whirling bulb (or bulge)
lengthening the leading-~edge on the upper surface. It is
to such a bulge that, in this case, the British denomination
of "bubble" appears to correspond.

Figure 3 represents, on the whole, these characteristics
of the envisaged flow.
3. APEX VORTEX AND VORTEX SHEET EN CORNET

The preceding scheme of the potential flow field was
envisaged primarily because it is classic and helpful
in bringing out the fundamental characteristics, and

further it is very simple. However, it does not correspond

to reality, except perhaps for some very small angles of

17
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incidence in which I doubt there is much interest in con-
sidering. Let us search, then for a preferable scheme of

greater value.

Bourrelet

4 i

‘ % ourrelet

—

Fig. 3.

For a thin wing having delta planform, with leading-
edges rather sharp, the flow around the front of the wing
(with the region surrounding the apex probably being an
exception) is very analogous to the relative flow in the

infinite delta.

At the 0. N. E. R. A. the many tests in the tunnel
which have béen performed in 1950-51 on wings with large
sweepback and with planforms more or less like that of
the delta, have made it evident that there is a formation

of zones of vortices which develop above the wing and




which start at the apex. These zones are rather distinctly
evident as soon as the angle of attack reaches about 6 to 9
degrees for sweepback angles greater than 45 degrees.

In 1951-52, as I have mentioned above, I had a rather
considerable effort developed in order to visualize, through
various means, the flows in question. Apart from the parti-
cular phenomena which appear near the tips or marginal ex-
tremities of these wings as well as in certain regions of
their trailing-edge, the ensemble of the vortices of the
upper surface appeared, for several observers, to be summed
up in two symmetric vortices coming especially from the apex
and forming, above the upper surface, a "vee" lying in a plane
less inclined to the free-stream velocity direction than the
wing, and less open than the "vee" formed by the rectilinear
leading~-edges.

Observing that these vortices can only be fed and
strengthened gradually by the ambient flow, I have deduced
from the collection of experiments the representation of the
flow in question by two sheets en cornet according to the

sketches of figure 4.

4
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Some recent publicationsl use some schemes which appear
to present a rather striking analogy to my "nappes en cornet"
(sheets in cornet). 1In order to establish a matter of
precedence, I recall that in 1952 I expounded this conception
in the following terms:2

"the two principal apex vortices appear to me to arise,
for each half-wing, rolling up en cornet from a vortex sheet
being detached from the upper surface, almost orthogonally
to the latter and along an almost straight line running
from the apex; this line is more or less close to the leading-
edge and constitutes the trace on the upper surface of a vortex
"boundary-wall" between the two streams of the lower and upper
surfaces."

The movement of these streams was stated as follows:

The upper surface stream falling downward along from the
upper side of the apex of the "tail-down arrow-shape,"”
which constitutes the wing being studied, diverts laterally
in lengthening streams downstream on the wing; equally
diverted lateraly, the flow on the lower surface is caused
to break (away from the surface -ed) in turning around the

leading-edge toward the upper surface.

1. One can cite, notably, a study of D. Kuchemann
(report no. Aero 2540, Apr. 1955, Brit. R.A.E.).

2. Cf. M. Roy, Characteristics of the flow around
a wing with extreme sweepback. (C. R. at the
Academy of Science, June 23, 1952.)



Ligne de séparatfon

—

Bord d'attaque

=

Figure 5

The difference between the line of separation cited
above, or the line of departure of the vortex sheet en cornet,
and the geometric line of the leading-edge is the function
of the radius of curvature of the profile of this leading-
edge. 1In particular, this difference is reduced in pro-
portion to the reduction in this radius of curvature (figure
5), and it tends towards zero when the profile is thinned
down and approaches a line, and the leading-edge becomes
sharp and, preferably, tapered.

This concept was brought out before in several
publications, especially in the "Recherche Aeronautique"
by R. Legendre in 1953 (no. 31) and by H. Werle in 1954
(no. 41, p. 19). A concept almost identical was adopted
by C. E. Brown and W. H. Michael in a very interesting paper
(Jour. Aero. Sci., Oct. 1954, cf. especially page 792,
fig. 1) in referring to the work of R. Legendre, but with-

out mentioning the origin of my scheme of vortex sheet

21
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en cornet.

In order to illustrate the preceding by virtue of a
simple example, figure 6 presents the visualization, by
milky streaks, of the flow on the under surface (o = 20°)
and on the upper surface (a = 11°) of a delta wing (¢ = 60°),
flat and thin, with a sharp leading-edge. The division of
the streamlines adjacent to the lower surface and the
whirling motion (vortex) of the sheet en cornet on the
upper surface are particularly recognizable in these two

pictures.

Lower surface (a=20°) Upper surface (a=11°)

Figure 6

4. PSEUDO-FLOW TRANSFORMATION
Let us consider the lines tangent to the components of
speed situated in the transformation plane, x = Cte. They

are treated continuously as streamlines of the "transformation



flow". 1In reality, it is a question of a psuedo transversal

flow, due to the fact that the flow is not solenoidal.

In fact, in incompressible flow, as it is evisaged here,

-the divergence of the speed, which is transformed is not

zero, since:

+3¥
b4

E

i

1
o
wle

<l
Q

and 3u/3x cannot be identically zero in the assumed hypothesis
of conicity.
Let us verify this by calculating %%.

The previously defined notations will be used:

VE cos ¢ =1+ (n, 7))
(@] n = Y
x cot ¢
v _
G cos a = x (n, ¢ ) z
o Eo= e
x cot ¢
w _
v; cos a = t (n, g )

One has, in the regions of irrotationality--that is to say,

outside of the vortex sheets or of vortex cores—-

(3) du _ Vo cos a cot ¢ {ngl + o (X 9IXy &+ ngl'l

X X Y% v t3g o an’ 3¢
an expression in which it can be seen that the second member

cannot be, generally and everywhere, zero, nor even necessary

negligible within approximate theories.
This second term, compared to the divergence of the
transformation speed 3v/3y + du/3z, is of the order cot? ¢;

in this way it approaches zero as ¢ tends to m/2.
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From this one can also conclude that in incompressible
fiuid the transversal psuedo-flow necessitates a distribution,
in its plane, of sources or sinks. In a certain way of
approximating, one can imagine that sources and sinks may
be everywhere negligible. In fact this manner most authors
have followed up to this point.

For my part, and as I have expressed in 1953 at
Goettingen at the Annual Assembly, in that city, of
Wissenschaftliche Gesellschaft fur Luftfahrt, I consider,
on the contrary, that a more acceptable scheme than the
transversal psuedo-flow must allow some distribution, at
least concentrated, of sources and sinks. In my communication,
at that time, which has not been published for financial rea-
sons, I had hypothesised this distribution on the lower surface--
combining two sinks with the two vortices of the lower surface
and in joining compensating sources in the plane of symmetry
zx of the flow.

One can envisage that sources (or sinks) which corres-
pond to the fact that %u/dx is not rigorously zero in the
entire transversal plane, may be everywhere negligible. Al-
though their effect may be summarized, even in the vicinity
of the wing, as being equivalent to a certain distribution of
sources (or sinks) concentrated in certain points or certain
lines. 1In any case, if one admits the existence of a sheet,

conical as a natural consequence of the admitted conic




affinity, for the entire flow, of free vortices one will show
further on that the section of such a sheet must be represented

by a line of vortex sinks (or sources).

L

Figqure 7

Here, let us remark that the shedding of the lower-
surface flow, along the length of the leading-edge of the
wing that we are considering, necessitates, in the plane ¢

of the transversal psuedo-flow, the existence of a boundary

line (£) skirting, at some distance, the leading-edge and
terminating on the upper surface on the positive side of the
axis [ at a point Cze(figure 7).

The area, 9/, bounded by the axis n and the line (&)
on the side ¢ > O is supplied through a limited passage from

1 to Ai on the n axis and thus receives a real supply

el d mle smae L ea ale sl e P I T o~
nn must beée absorbea by some sinks, dist

points A

Cu
1
(1]
Cu
z
"
G

{(of flui
buted or concentrated in the area,qyn In compensation
for these sinks, one must conceive in the plane, &, and

exterior to the area,gb, the existence of equivalent sources,
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distributed or concentrated. In fact, when one is especially
concerned with evaluating, with a convenient approximation,

the speeds and pressures on a wing and in the wing's vicinity,

it is not prohibited, by a principal previously used, to
move the compensating sources in qguestion toward infinity to
permit the use then of steady potential flow and of the
normalized speed.

Moreover, as will be seen, the sheet en cornet and the
conic distribution of velocity involved with it associates
necessarily some weak sources or sinks with the weak vortices

which constitute the sheet.

g

E,ET]'{’”;

5 T / N f 7

5. EQUATION OF THE SHEET EN CORNET
In the plane ¢ (figure 8) and on the transversal section
of the sheet issued from the leading-edge at the right A1

(n = +1), let us designate a curvilinear coordinate system




at the flow point (M, "downstream” from A) and name the two
axis § and n which are oriented along the direction tangent
and normal to the curvilinear section in question, the
"plane (s, n) being itself oriented in the same sense as the
plane (n, ;5. Let us place the indices e and i to designate
the two faces of the sheet which extend the upper (e) and

lower (i) surfaces of the wing. At the flow point M on the

G(s) = b, — D,
(4) G’ (s) = dG/ds = ¢,, — v,,,

3(s) = vn, — 0n,

sheet:

VS and Vndesignate the components, along the s and n axes,
of the normalized velocities (x, 1), which is derived from
the velocity potential ¢ (n, ).
According to this definition, for a positive element,
ds, of the sheet:
(—G'ds) represents the circulation directed around
the element ds.
(Gds)'represents volume of flow of the fluid emitted
albegraically by the element ds of a conic slice of
the sheet of which the height, relative to the x axis,
is unity.
Let us designate finally by r and r, the components of the
radius-vector OM of the axes s and n.
An easy calculation shows that the condition of tangency
of the velocity of the vortex sheet at the two faces, is

expressed by the double relation:
(5) ("n)d = (1 + ""a() ry cotg .

Taking into account (2) and (4), one has:

27
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By —— @y = [(q)a - (Dl) - (vl- - v‘l) ;‘l - ("":—0"1) rn] COtg P
= (G — G'r,) cotg ¢ — 3r, cotg o,

_ O —m = (60— 0'r) ;B2
Then subtracting from (5): (6) T e

3 = v, —0p = (G—G'r,) ,?:’ﬂtg,—¢~
According to Bernoulli's law we can state that the

pressure is continuous through the sheet (p = p.), giving
e i
the equation:
(1+w) (we—wi)+vs(vs —vs_)+vn(vn —vn.) = 0,
e i e i

This relation is finally put in the form:

G_lel(rz + tgz@)"—(m +tge)r —
vy — (D + tg o)

{7) avec O = O, + G/2,

v, = v, + G'/2,

=gt

Ov

Equation (7) of our vortex sheet en cornet is an integro-
differential equation of a peculiar style, and it is not
classic up to this time. In considering it, for example,
G(s), the unknown function, enters into the expression through
itself, through its derivative, and through its integrals
of the second order and of the first order expressing ¢i (s)
and vs_(s) beginning with G'(s) and r(s)..

Aiother unknown is the "form" of the sheet, that is to
say, the functiong rs(s) and rn(s), or, if one prefers, the
function z(n) which defines it in the plane §. Of course,
in addition to the equation (7) expressing the continuity

of the pressure through the sheet en cornet, one disposes

of the two equations (5) expressing the tangency of the




flow of the upper surface and lower surface (prolonged) to
this sheet. If one considers one of these equations as
defined by (4), the function §(s), in itself considered then
-as known from G(s) and from z(n) — or r_(s) and r (s),
which follow from z(n), — it is only necessary to add to
(7) the single existing equation (5). This suffices to
determine the two unknown functions G(s) and z(n), on the
condition that one considers as negligible the sources
distributed in the plane, g, outside the sheet, and then that
one . reduces the ensemble of compensating sources of the
vortex sinks of the sheet en cornet to a single source at
infinity. Here the sources and sinks, the compensators, are
both considered in the algebraic sense. The equation (5)

can be written:

Upy = (L +w ) cot @

i

it

[1 + (<I>i —u’si r, —V*ni- rn) cot@® ] ro cot ¢

In order to be brief, I shall not discuss here the
obviously essential question of whether there exists a
complete solution of the equation (7). Nor shall I discuss
the fact that if such a solution is unique, the flow
becomes peculiar at infinity where the compensator sources
"0of the flow ficticiously are placed, in the plane &, by
the assembly of the vortex sheets en cornet.

I shall only remark that, if one follows continually
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Bourrelet marginal

Figure 9




the trace of the sheet, in the plane ¢, from the leading-

edge, A,, for a wing with a positive‘angle of attack:

G(s) decreases continually, but remains positive up

to the passing of the free edge of the sheet.

G'(s) is always negative, and at first small.

rs(s) at first positive, quickly becomes zero, for

the sheet folds back on itself in a very short
space -- then becomes negative.

r changes sign each time that the radius-vector

OM becomes normal to the trace of the sheet, that
is to say, after each rotation of 180 degrees of
the direction tangent s of the trace.

Therefore, at least for the initial portion of the sheet
included between A; and the tangent furthest to the left of
the origin 0 of the plane ¢ (refer to figure 8), the factor
‘(G - G'rs) the & is certainly positive, that is, ¢ has
the sign of ro. This signifies that the sheet end, at least,
is effectively represented, in a necessary manner, by a

distribution of vortex-sinks.

If the sheet folds back more, that is, if the rolling
en cornet (or "wrapping-up" -ed.) continues, the preceding
character can be reversed, and it can be S0 cach time that
the sign of r, or that of (G - G'rs) changes. Of course,
the ensemble of symmetfic sheets relative to the two leading-

edges and the complete areagybf figure 7 must equal a sink
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which absorbs the flow which crosses the line A; A'.

6. POSSIBLE FORM OF THE EDGE OF THE SHEET EN CORNET

The admitted conicity - a hypothesis which is well
stated elsewhere - excludes that the sheet rolls inde-
finitely on itself, for this disposition ought to appear
from the apex.

Let us assume that the rolling-up is limited, that is,
that the sheet en cornet presents a marginal edge, indicated
by point B; in the plane ¢ (figure 9) for the sheet to the
right, issued from the leading-edge A;. Then this sheet
is a conical fluid surface A;B; with pressure equal on
both faces at each point. This surface extends the wing

surface and the marginal edge B; of this sheet is, in a




manner, substituted for the leading-edge A; of the plane wing—

extra thin and with sharp-edges.

This sheet is thus formed to avoid the direct turning
-of the fluid around the sharp leading-edge at A;, which is
not possible by continuous potential flow. One must admit,
on the contrary, that the flow turns around the marginal
edge B; of this sheet. One will note, in passing, that if
it did not thus procede G(s) and G' = dG/ds would be zero
at B, or one would have the cancellation of strength of
the circulation, and at_the same.time, of the surface out-
flow of the sheet en cornet.

The turning about B; by the transverse psuedo-flow
is, beside being made evident by the present experiment,
according to the words of Pascal, "the master that we
must follow."

However, it is not possible to neglect the viscosity
of (the fluid at -ed.) point B; nor in the vicinity of B;,
for it alone prevents the speed from increasing indefinitely
as it would in the case of a perfect fluid turning the
sharp edge B; of our schematic sheet.

Because of the viscosity, there is formed at B; a

s b A e oA b e

progressively and continually by the vortex filaments which
constitute the sheet and which follow, on the sheet, a

line from the leading-edge at A; so that they finally, and
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rather rapidly, become oriented along the axis of the marginal
bulge when they reach the latter {efer to figure 9).

In the case, depending on the angle of attack o, where
the angle of turning of the sheet — the total angle of
rotation in the plane ¢ of the directional tangent s along
the trace of the sheet — is less than =, the velocity vectors

of the transverse pseudo-flow are>presented as the schematic

of figure 10. 1In this figure, the terminal point Cﬁ;of figure
7 has been placed hypothetically on the positive part of the
axis z.

Let us stress this concept of the "bourrelet marginal
de la nappe en cornet" — padded edge of the rolled-up
vortex sheet.

It is a rotational region. The viscosity of the real
fluid, which cannot be neglected in this zone with its
extreme velocity gradients, causes the entrainment by this
bulge (or vortex core -ed.) of the fluid field which turns
around it.

This entrainment occurs continually in proportion to
the distance from the apex, continually enlarging the
rotational core, the conic form of which blends with that
of the (vortex) sheet en cornet, which agrees with our
fundamental hypothesis of conicity, originating at the
apex, of the entire flow.

The formation of the edge bulge can be represented

initially by neglecting the viscosity as shown in figure 11.




Figure 11

The vortex core (shaded) absorbs at its edges the flow
of the trénsversal pseudo-current which has crossed the
boundary A; A' and which has not been absorbed through the
trace A; B;' (instead of A, Bl)vof the sheet en cornet.

One can imagine that this core may be in constant rotation,
according to a conception recently developed by R.

Legendre for a cylindrical pad {(bubble) cn the leading-
edge of a rectangular wing plane. Let us emphasize, at
any rate, that in proportion to the distance from the

apex, the circulation c¢f the marginal pad and its
contained flow volume increase proportionally to the

abscissa X; first, by the continual contribution of the

vortex filaments from the sheet en cornet (of reduced section

issued from A,;, but limited to B;') and second, by the
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absorption of inflow through the lateral surface of the
bubble (according to the effect of sinks on the contour of
the core in the plane £).

The presence of this bubble, its progressive develop-
ment, and its stability linked to that of the vortices
within a fluid having negligible viscosity (outside these
vortices), are very well corroborated by experiment.
Especially must there be explained the double streaks, with
multiple turns, observed on the streamlines adjacent to the
padded edge of the rolled-up vortex sheet.

It is, moreover, in the same way explained, the form-

ation of the tip vortices of the straight wing or ones

having very small sweepback and having an almost elliptical

lift distribution. At the tips of these wings, and from
the leading-edge itself, if the latter curves rapidly down-
stream in the region of the tip, there forms a (vortex)
sheet en cornet which creates its own circular core as it
is in this one, very concentrated and very durable. This

core, or bubble, constitutes the tip vortex of the wing in

the usual sense.
7. PRACTICAL SCHEME OF FLOW

The delicate question remains to define a scheme being
inspired by the preceding — which comes directly from
experiment — in such a manner that this scheme may be
practical, that is, that it furnishes a good enough approx-

imation of the distributions of speeds and pressures on




the wing and around the wing and that it simplifies the
calculations sufficently.

I have insisted upon the condition "rational" to which
-my concept of the sheet en cornet is subjected in order to
respect the laws of fluid mechanics, taking into account
an intervention of the viscosity; so as to explain the
detachment of this sheet from the leading-edge if it is
sharp, or from an adjacent line if it is more or less rounded,

and thus to explain the formation of a rotational core

on the edge of the sheet.

Among these rational conditions appears, especially,
the equilibrium of pressure, at any point on the sheet,
between the two faces; and a finite difference between the
direction of the flow velocity from the upper surface
and that of the flow from the lower surface.

I have emphasized also the theoretically necessary
connection of weak sink (or sources) of weak vortices of the
sheet en cornet, in the assumed hypothesis of conicity as
well as the approximate character of the concomitant
hypothesis of solenoid flow for the transversal psuedo-
flow outside of the preceding singularities.

Recently, 1 have made, with the cclla
P. Duban, several attempts at maximum simplification of

the scheme of flow. All of these attempts in which the sheet

en cornet was represented only fragmentarily have furnished
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some results which, while very acceptable in several

interesting respects, entail some local unpleasant faults.

C
B,
_--0 o !
&3 =
~h —C2
A, A, n

Figure 12

Another attempt, at present in the course of calcula-
tion, involves a sheet en cornet, with a continuous dis-
tribution of vorticity from A, to B; and completed at B,
by a concentrated vorticity-sink (figure 12). In spite of
this stylization taken from the true structure of the sheet
en cornet, the calculations are far more difficult than
the preceding. The results will be presented later if
there will be a place for them.

In any case the representation (at B; and B,) of the
marginal vortex bubble by a concentrated vortex sink, that
I proposed at Goettingen in 1953, appears to me to gain
credence, by what the visualization of the real flow
teaches, and at the same time, by a reasonable concern for
simplification of calculations. The calculations are
concerned with the question of evaluating speeds and

pressures on a wing or in its immediate vicinity.




8. THE TEARING OF THE SHEET EN CORNET

It is evident that, in reality, and for a delta wing
of great depth (long chord -ed.), the conic flow is only
‘approximate, and only for a limited portion of the wing.

The viscosity exercises a cumulative influence, with the

length of the leading-edge and distance from the apex, on what

causes the formation and detachment of the sheets en cornet.
This influence progressively causes the real flow to diverge
from the idealized flow, that one assumes elsewhere for a
perfect fluid.

One can, from this, imagine that at a certain distance
from the apex, the sheet en cornet, formed from this point,
breaks away from the leading-edge and that a new piece of
sheet en cornet is formed from this point of tearing.

This new sheet, in turn, will terminate at a point more
downstream on the leading-edge, and so on.

Thus, several “bubbles", sorts of concentrated vortices,
can appear above and along a delta wing, vortices which then
roll more or less rapidly, on each other.

The effect of interaction of the trailing-edge on the

flow around the leading-edge can equally favor the tearing

of a sheet en cornet before its development attains the
delta wing tip.

Some number of observations of flow visualized at the
0. N. E. R. A., on thin wings with strong sweepback, delta

wings, as well as some streamline bodies, appear to me as
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basis for the preceding statement. I limit myself here

to emphasizing the influence, evidently major in this
instance, of the Reynold's Number relative to the magnitude

of the obstructions to the meaning of the flow field.




Translation of: SUR L'ECLATEMENT DES TOURBILLONS D'APEX

D'UNE AILE DELTA AUX FAIBLES VITESSES

From La Recherche Aeronautique, No. 74, Janvier-

Fevrier, 1960.

ON THE BURSTING OF THE APEX-VORTICES

. ) -
OF A DELTA WING AT LOW SPEEDS N67 -1 6 1 7 0

by

H. Werle, Research Engineer of the O.N.E.R.A,

SUMMARY

In a conference held recently in Hanover, Germany (1),
Mr. Maurice Roy, direqtor of the 0. N. E. R. A., again
discussed and developed his concept of the flow around a
delta wing, operating at an angle of attack, characterized
by the rolling-up into a "cornet" of the vortex sheet of
the upper surface of the wing.

In the course of this report, some visualizations
(of the flow), obtained in a hydrodynamic tunnel (2),
illustrated an analysis of the entire flow as well as certain
local details of the various types of flows studied.

The experimental results presented below enter the
framework of the general study. They concern a detail, as
yet little understood, of the vortices from the apex: the
phenomenon of the bursting of the vortices under the action

of turbulence. The studies carried out in a hydrodynamic
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tunnel have permitted an exact determination of the mechanism
of the explosion, the influence of the downstream conditions,
and of the principle parameters.

I. MECHANISM OF THE BURSTING

Let us first recall briefly the structure of the
(vortex) sheet en cornet (3) and (4):

The marginal bulge or bubble of the sheet - a kind of
a conical shaped core rolling up into one piece - is
maintained all along the leading~-edge. All colored streaks
emitted at the leading-edge twine around the axis describing
a helix of constant diameter and of slightly increasing rate.
The diameter of the helix is an increasing function and is
approximately linearly proportional to the distance from
the apex to the point of emission on the leading-edge. 1In
particular, an emission near the apex makes the axis of the
bulge easily seen: see figure (1). This bulge is completely
laminar near the apex.

The appearance of turbulence in the downstream part of
the bubble disorganizes the mechanism of the flow by pro-
voking a veritable explosion of the core:

The colored stream emitted near the apex and describing
a helix of a very reduced diameter around the axis of the
laminar part of the core drastically transforms itself through

transition (E) into a helix of increasing diameter while




starting to comprise a pocket of turbulent fluid: see

figures 1 to 3.

II. INFLUENCE OF DOWNSTREAM CONDITIONS

Figures 4 to 7 show that the phenomenon is very
sensitive to the downstream conditions of flow:

— A suction at the interior of the turbulent pocket
permits the retardation or even the stoppage of the bursting
(4).

— A solid or fluid obstacle placed in the same conditions
brakes the flow and provokes an inverse effect. (fig. 5 &
6).

— A jet in the direction of the flow, sent, for
example, from the lower surface side, accelerates the fluid
which has as a consequence the recession of the explosion
at the same time as the curving of the axis of the vortex
toward the jet. (fig. 6)

All these test prove that the phenomenon of bursting
is tied to the very rapid deceleration of the fluid, con-
firmed by certain hypothesis set up by Bryer and Lambourne
(5).

III. INFLUENCE OF THE PARAMETERS

A comparison of figure 8 (view at the right) and

figure 1 shows that with the incidence (angle of attack)

i and the sideslip (angle of yaw) J constant, the explosion
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E approaches the apex whenever the Reynolds number RQ

(based on velocity'VO) increases;'E tends toward a limit
which is the position actually reached for R, = 104,

An increase of incidence, i, accomplished with j and
R2 constant, is marked by a progressive movement (from the
downstream beyond the trailing edge) from point E toward
the apex, thus reducing, in a continuous manner, the laminar
part of the core (figure 8).

Given the structure of the wing (constant thickness =
1l mm.), the sideslip angle, j, of the wing can be used to
make an apparent modification of the sweepback of the leading-
edge. This sweepback becomes 60° + j or 60° - j depending
on the edge being considered (the right half-wing or the
left half-wing).

The influence of the sideslip (or yaw), with i and
R, constant, appears clearly in figure 9 (in comparison
with figure 8):

On the half-wing for which the sweepback effectively
increases, one observes the recession of the bursting toward
the trailing-edge, whereas, on the contrary, the turbulent
pocket continually moves forward toward the apex as (F%FF
decreases.

The thickness of the wing and the radius of its

leading-edge have an effect on the explosion E analogous

to that of the incidence; situated in identical test




configuration (i, j, Vo' Rl' QQBA), the occurrencg of the

bursting is retarded when the wing considered is thicker
and the radius of the leading-edge is greater: (observe
-and compare figure 10 with figure 1).

Finally, the planform of the wing has a not neg-
ligible effect on the appearance of the phenomenon (see
figure 11, and compare with figure 8 (b). In effect,
in the case of a slightly-opened cone, resembling a delta
wing, with very large sweepback, the vortices issuing
from the point do not burst in the immediate proximity
of the model, at least in the usual instance. It is the
same for the tip vortices of a rectangular wing of short

span or of an elliptical wing.

Manuscript submitted Dec. 29, 1959
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Fig. 1 - Mechanism of the bursting: .
(a) View of the upper surface. (b) View in perspective.
(c) View of the profile.

Fig. 2 - Mechanism of the bursting:

(a) Transversal section of the explosion up-stream from the
explosion.

(b) Transversal section of the explosion downstream from it.

(c) Downstream view of the phenomenon.




Fig. 3 - Mechanism of the bursting.

Schematic diagram of the mechanism of the bursting. Thin
delta wing with a sharp leading-edge; incidence, i=20°;

sideslip, j=0°; R2z5x103; Vo= 5 cm./sec.; sweepback of the
leading-edge,

e/ = 1%.

¢BA = 60°; chord at the wing root, 2=100 mm.;

£ Ll
£ the apex votex.

(A4) Axis o
(B) Point of bursting of the vortex.

(C) Pocket of turbulent fluid.




a b

Fig. 4. Influence of downstream conditions: Thin delta
wing with sharp leading-edge.
i=20°; 3=0°; VO=5 cm. /sec.; RQ = 5x103.

(a & b) Influence of suction.

Fig. 5. Influence of downstream conditioms: Thin delta
wing with sharp leading-edge.

3
i = 20° j = 0°; Vv

0= 5 cm./sec.; R, = 5x10°,

Influence of an obstacle.
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Fig. 6. Influence of downstream conditions: Thin delta
wing with sharp leading-edge.
1=20°; 3=0°; V,= 5 cm./sec.; R,= 5x10°.
) (a & b) Influence of a jet in the direction of flow.

Fig. 7. 1Influence of downstream conditions: Thin delta
wing with sharp leading-edge.
i = 20°; j = 0°; V0= 5 cm./sec.; R2= 5xlO3.
Influence of a jet against the flow.
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Fig. 8. Influence of incidence angle, 1i.
(a) i=12°, j = 0°. (b)) i = 20°, 3j = 0°.

( ¢ ) Schematic gives the displacement of E as a function of
i. Tests carried out with j = 0°; Vo= 10 cm./sec.; R = 104;
chord at the root of the wing, ¢ = 100 mm.

The figures shown on the schematic give the value of the

incidence, 1i.



a)

c)

Fig. 9. 1Influence of the side-slip.

i=12%, § = 15°, b) i = 20°, § = 15°.
Schematic gives the displacement of E as a function of T e
Tests carried out with 1 = 20°; R2 = 104; chord at the

root of the wing, 2 = 100 mm.; V0= 10 cm./sec..

The figures on the chart give the value of the side-

slip ancle.
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Fig. 10 - Influence of the thickness of the wing.
a) e/% = 10% (median plane); i=20°; Vg =5 cm/sec.
b) e/ 4 16% (median plane); i = 25°; Vy = 5 cm/secC.

Cc

Fig. 11. 1Influence of the form of the model.
12°, V0= 10 cm./sec.

Il

a) cone; view of the top surface; i
b) rectangular wing; view of top; i = 12°, VO= 10 cm./sec.

c) elliptical wing; lower surface tip; i=11°, V0=lO cm/sec.
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